Asymptotic Dynamics of Nonlinear Schrödinger Equations with Many Bound States
نویسنده
چکیده
We consider a nonlinear Schrödinger equation with a bounded local potential in R3. The linear Hamiltonian is assumed to have three or more bound states with the eigenvalues satisfying some resonance conditions. Suppose that the initial data is localized and small of order n in H1, and that its ground state component is larger than n3−ǫ with ǫ > 0 small. We prove that the solution will converge locally to a nonlinear ground state as the time tends to infinity.
منابع مشابه
Asymptotic stability of ground states in 2D nonlinear Schrödinger equation including subcritical cases
We consider a class of nonlinear Schrödinger equations in two space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions ...
متن کاملAsymptotic Dynamics of Nonlinear Schrödinger Equations: Resonance Dominated and Radiation Dominated Solutions
We consider a linear Schrödinger equation with a small nonlinear perturbation in R3. Assume that the linear Hamiltonian has exactly two bound states and its eigenvalues satisfy some resonance condition. We prove that if the initial data is near a nonlinear ground state, then the solution approaches to certain nonlinear ground state as the time tends to infinity. Furthermore, the difference betw...
متن کاملAsymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases
We consider a class of nonlinear Schrödinger equation in three space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions...
متن کاملOrbital stability of bound states of nonlinear Schrödinger equations with linear and nonlinear lattices
We study the orbital stability and instability of single-spike bound states of critical semi-classical nonlinear Schrödinger equations (NLS) with linear and nonlinear lattices. These equations may model an inhomogeneous Bose-Einstein condensate and an optical beam in a nonlinear lattice. When the linear lattice is switched off, we derive the asymptotic expansion formulas and obtain necessary co...
متن کاملSelection of the Ground State for Nonlinear Schrödinger Equations
We prove for a class of nonlinear Schrödinger systems (NLS) having two nonlinear bound states that the (generic) large time behavior is characterized by decay of the excited state, asymptotic approach to the nonlinear ground state and dispersive radiation. Our analysis elucidates the mechanism through which initial conditions which are very near the excited state branch evolve into a (nonlinear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008